Shortening the Insertion Time for Materials Technologies— the 21st Century Metals Challenge

Dennis M. Dimiduk & Rollie Dutton

Materials and Manufacturing Directorate

Air Force Research Laboratory

Acknowledgements:

Lee Semiatin, Jim Larsen
Advanced Metallics Research Group

Leo Christodoulou, Steve Wax

Observation: Historical Aerospace Material Life Cycle

Stages

S1= Revolutionary

S2 = Emerging

S3 = Specialty Material

S4 = Commodity Material

Aerospace Structural Materials Development: How It Happened

Adapted from Fraser, 1998; Wax, 1999

- DoD materials transition opportunities (systems) have drastically reduced
- Material development time far exceeds the modern short product cycle
 - iterative, empirical development of "Knowledge Base" is lengthy, data intensive, and expensive

The Disconnect!

Major disconnect between materials development & components/systems engineering design

- Known alloy to reliable part ~36 months
- Steels for navy landing gear 15+ yrs
- Lightweight composites for army vehicles 15+ yrs
- Gamma titanium aluminides ~30yrs and counting
- Ceramics for engines -30+++? yrs
- Evolutionary alloy changes (ship steels, superalloys, etc) ~7-10 years

Materials

Development

- Highly Empirical
- Testing Independent of Use
- Existing Models Unlinked

Engineering Design

- Materials Input from "Knowledge Base" of Data (Data Sheets, Graphs, Heuristics, Experience, etc.)
- System/Sub-System Design is Heavily Computational and Rapid
- Well Established Testing Protocols

Integrating Materials & Processes with Engine Design

Design "development cycle": <3 yrs

Materials & Process "cycle": 7-20 yrs

AIM Paradigm for Materials R & D

- Building "Designer Knowledge Base" begins at outset
- Optimization based on <u>design</u>
 IPT need
- Time & effort refines <u>quality</u> of knowledge base, <u>not its scope</u>

- Sequential M & P
- Optimized from heuristics
- "Designer Knowledge Base"
 NOT Ready Until Final Stages

Major Components of Designer Knowledge Base

Guiding Constraints

- A key deliverable must be a validated representation of the material and process: designers work with representations!
- Structural materials design demands confidence in control of timedependent properties, thus representations needed for LCF, HCF, crack growth creep, stress rupture environmental degradation, stress corrosion friction, wear, and fretting
- 'New material' demands rapid, validated representations—but how?
- Need ubiquitous tools for optimization: a representation framework efficient validation

'Accelerated Insertion' Rather Than 'Materials by Design'

Modeling in the Component Design Process

"Field Experience" corrects for i) microstructure variation, ii) inaccurate analysis, & iii) incomplete understanding of service environment

The Case of Ni-Alloy Engine Disks

- Continuum codes (i.e., DEFORM) for thermal history and microstructure correlation over disk cross-section
- Cross-section may be "zoned" into a few regions (dual heat treat); centimeter-scale homogenization
- Empirical yield-strength models, & flow-curve 'templates,' used to assign constitutive response
- Variation of structure averaged out; local microstructure - defect interactions not represented
- Data-intensive and time-costly process for yield model and 'constitutive template' validation

Challenges to represent time-dependent failure; to introduce "new material"

The "Plasticity Engine" for Properties

Design Concept

Focus on Work-Hardening Parameterization *With µ/s Effects*

$$\dot{\tau} = \left\{ h - \left(\frac{\tau - \tau_o}{\tau_s - \tau_o} \right) h \right\} \left(\dot{\gamma} \dot{\gamma}_o \right)^m$$

Conventional Finite Element Model Continuum Crystal Plasticity Constrained Crystal Plasticity Strain-Gradient Crystal Plasticity must define $\tau(\rho)$, $\rho(\gamma)$ to find k_o

$$\begin{split} &\{\tau_{o},\,\tau_{s},\,m,\,h\} \\ &\{\tau_{o,i},\,\tau_{s,i},\,m,\,h_{ij}\} \\ &\{\tau_{o,i}(k_{hp}),\,\tau_{s,i},\,m,\,h_{ij}\} \\ &\{\tau_{o,i},\,\tau_{s,i},\,m,\,h_{ij}\} + k_{o} \end{split}$$

increasing granularity & compute complexity

Build from Uni- / Multiaxial Slip & Work Hardening

Direct links: computationally challenging & underdeveloped

Real Microstructure in Simulations

0.5

3-D Quantitative Microscopy

Serial Sectioning & Imaging

3-D Rendering of Structure

5 µm

IN-100 Ni-base Superalloy
Grain Structure and Carbide/Boride Distribution

3-D Quantitative Microscopy

Serial Sectioning & Imaging

14 x 14 µm Image Area

Ni-Cr-Al Superalloy

Aligned stack (~20 nm spacing)

Rendered 3-D volume (~3 µm thick)

Mathematical Representation

Principal Component Analysis of Microstructure

Mechanical Testing of Ultra-Small Samples for Crystal Properties

- Focus efforts on linking simulation to design
- Small-scale properties measurement for constitutive representations
- Theory for broad understanding of deformation at small scales

Even Simple Models Have a Big Impact

- Integrated structure-property-process models successfully applied as point solutions
 - statistically fit data to mechanistic-based property model
 - focused experiments to model microstructural evolution
 - accurate estimate of mean behavior

112095.cdr

P & W ----

Shaft design:

- 1/4 development time
- 80% reduction in cost

Experience shows concept is sound, projected payoffs reasonable

Eventually Must Address Full Breadth of Component Requirements

Requirements for Turbine Engine Disks:

- **Ultimate Tensile Strength**
- 0.2 % Yield Strength
- Tensile Ductilities
- Notch Strength
- **Burst Margin** DARPA - AIM
- Creep
- Rupture
- Rupture Ductilities
- **Continuous Cycling LCF**
- **Hold Time LCF**
- **Continuous Cycling Crack Growth**
- **Hold Time Crack Growth**
- **Superplasticity**
- Flow Stresses
- **Abnormal Grain Growth Resistance**
- **Gamma Prime Solvus**
- Carbide(s) Solvus
- **Density**

1-Jan-04

- TIP
- **Structural Stability**
- **Exposed Behavior**
- **Defect Sensitivity**
- **Defect Content** The Issues That
- Grain Size
- Often Determine Gamma Prime Size Success or
- **Failure Segregation /Effects**
- Inspectibility
- Quench Crack Resistance
- Multi-source Capability
- Low Costs--Elemental and **Processing**
- Weldability
- Machinability
- **Machined Surface Behavior**
- Residual Stresses
- Cost Reduction Potential
- Size/Volume Scaling Effects

Materials & System Readiness

Summary

- The time for structural materials development and use must be shortened (time focus, not cost focus)
- Industrial M & P community demanding a quantum-leap in relevant engineering simulation capability
- <u>Accelerated Insertion of Materials</u> is the long-term, strategicallyrelevant, computational materials science & engineering vision
- Materials Science & Engineering community must produce integrated predictive tools
- Accelerated insertion demands integration of engineering design with M & P to achieve true systems engineering of materials technologies